Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
2.
Allergy ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38445568

RESUMEN

BACKGROUND: Anti-IgE immunotherapy with monoclonal antibodies represents a breakthrough in treatment of severe allergic diseases. However, drawbacks such as short half-life and high price are not negligible. Our objective is to develop an anti-IgE vaccine based on virus-like particles (VLPs) which can induce long-lasting neutralizing IgG anti-IgE antibodies reducing allergic responses without causing intrinsic mast cell activation due to IgE cross-linking. METHODS: The vaccines were made by chemically coupling three synthetic mouse IgE-Fc fragments to plant-derived immunologically optimized CuMVTT VLPs. The immunogenicity of the vaccines was tested by immunizing naive or allergic mice either with the coupled vaccines or the VLP control followed by systemic or local allergen challenge. RESULTS: Mice immunized with the vaccines exhibited high titers of anti-IgE antibodies in the sera and high levels of anti-IgE secreting plasma cells in lymphoid organs. Moreover, free IgE in serum were reduced by the induced anti-IgE antibodies; therefore, less IgE was bound to FcεRI on the surface of basophils. In line with these reduced IgE levels on effector cells after vaccination, immunized mice were protected from challenge with allergens. Importantly, despite presence of anti-IgE antibodies, no signs of acute or chronic allergic response were seen in immunized allergic mice. CONCLUSION: The generated vaccines can effectively induce anti-IgE antibodies that did not cause allergic responses in sensitized mice but were able to decrease the level of free and cell bound IgE and protected sensitized animals from allergic responses upon allergen challenge.

3.
J Control Release ; 366: 52-64, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154541

RESUMEN

The poor penetration of monoclonal antibodies (mAb) across the blood-brain barrier (BBB) impedes the development of regenerative therapies for neurological diseases. For example, Nogo-A is a myelin-associated protein highly expressed in the central nervous system (CNS) whose inhibitory effects on neuronal plasticity can be neutralized with direct administration of 11C7 mAb in CNS tissues/fluids, but not with peripheral administrations such as intravenous injections. Therefore, in the present study, we engineered a CNS-penetrating antibody against Nogo-A by combining 11C7 mAb and the single-chain variable fragment (scFv) of 8D3, a rat antibody binding transferrin receptor 1 (TfR) and mediating BBB transcytosis (11C7-scFv8D3). The binding of 11C7-scFv8D3 to Nogo-A and to TfR/CD71 was validated by capture ELISA and Biolayer Interferometry. After intravenous injection in mice, capture ELISA measurements revealed fast plasma clearance of 11C7-scFv8D3 concomitantly with brain and spinal cord accumulation at levels up to 19 fold as high as those of original 11C7 mAb. 11C7-scFv8D3 detection in the parenchyma indicated effective blood-to-CNS transfer. A single dose of 11C7-scFv8D3 induced stronger activation of the growth-promoting AkT/mTOR/S6 signaling pathway than 11C7 mAb or control antibody. Taken together, our results show that BBB-crossing 11C7-scFv8D3 engages Nogo-A in the mouse CNS and stimulates neuronal growth mechanisms.


Asunto(s)
Anticuerpos Monoclonales , Barrera Hematoencefálica , Ratas , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Proteínas Nogo , Anticuerpos Monoclonales/metabolismo , Encéfalo/metabolismo , Proteínas de la Mielina/metabolismo
4.
Vaccines (Basel) ; 11(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38140255

RESUMEN

The mechanisms of action of allergen-specific immunotherapy (AIT) are often referred to as the induction of 'tolerance'. However, immunological 'tolerance' is defined as an alteration in the function or composition of immune cells. For AIT, this is not always the case, because it can also induce allergen-specific IgG antibodies that block allergic responses. To include all possible mechanisms that may mediate successful AIT, it is advantageous to use the scientific term 'unresponsiveness' instead of 'tolerance'. In praxis, the term 'vaccination' is also appropriate, as AIT medications are specialized vaccines.

5.
PLoS One ; 18(11): e0293892, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917747

RESUMEN

Amyloidosis is a group of protein-misfolding disorders characterized by the accumulation of amyloid in organs, both in humans and animals. AA-amyloidosis is considered a reactive type of amyloidosis and in humans is characterized by the deposition of AA-amyloid fibrils in one or more organs. In domestic shorthair cats, AA-amyloidosis was recently reported to be frequent in shelters. To better characterize this pathology, we report the distribution of amyloid deposits and associated histological lesions in the organs of shelter cats with systemic AA-amyloidosis. AA-amyloid deposits were identified with Congo Red staining and immunofluorescence. AA-amyloid deposits were then described and scored, and associated histological lesions were reported. Based on Congo Red staining and immunofluorescence nine shelter cats presented systemic AA-amyloidosis. The kidney (9/9), the spleen (8/8), the adrenal glands (8/8), the small intestine (7/7) and the liver (8/9) were the organs most involved by amyloid deposits, with multifocal to diffuse and from moderate to severe deposits, both in the organ parenchyma and/or in the vascular compartment. The lung (2/9) and the skin (1/8) were the least frequently involved organs and deposits were mainly focal to multifocal, mild, vascular and perivascular. Interestingly, among the organs with fibril deposition, the stomach (7/9), the gallbladder (6/6), the urinary bladder (3/9), and the heart (6/7) were reported for the first time in cats. All eye, brain and skeletal muscle samples had no amyloid deposits. An inflammatory condition was identified in 8/9 cats, with chronic enteritis and chronic nephritis being the most common. Except for secondary cell compression, other lesions were not associated to amyloid deposits. To conclude, this study gives new insights into the distribution of AA-amyloid deposits in cats. A concurrent chronic inflammation was present in almost all cases, possibly suggesting a relationship with AA-amyloidosis.


Asunto(s)
Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Humanos , Gatos , Animales , Placa Amiloide/complicaciones , Rojo Congo , Amiloidosis/patología , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/complicaciones , Amiloide , Proteína Amiloide A Sérica , Proteínas Amiloidogénicas
8.
Front Allergy ; 4: 1117611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056355

RESUMEN

It is well established that immunoglobulin E (IgE) plays a crucial role in atopy by binding to two types of Fcε receptors (FcεRI and FcεRII, also known as CD23). The cross-linking of FcεRI-bound IgE on effector cells, such as basophils and mast cells, initiates the allergic response. Conversely, the binding of IgE to CD23 modulates IgE serum levels and antigen presentation. In addition to binding to FcεRs, IgE can also interact with other receptors, such as certain galectins and, in mice, some FcγRs. The binding strength of IgE to its receptors is affected by its valency and glycosylation. While FcεRI shows reduced binding to IgE immune complexes (IgE-ICs), the binding to CD23 is enhanced. There is no evidence that galectins bind IgE-ICs. On the other hand, IgE glycosylation plays a crucial role in the binding to FcεRI and galectins, whereas the binding to CD23 seems to be independent of glycosylation. In this review, we will focus on receptors that bind to IgE and examine how the glycosylation and complexation of IgE impact their binding.

9.
PLoS One ; 18(3): e0281822, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36989207

RESUMEN

Systemic AA-amyloidosis is a protein-misfolding disease characterized by fibril deposition of serum amyloid-A protein (SAA) in several organs in humans and many animal species. Fibril deposits originate from abnormally high serum levels of SAA during chronic inflammation. A high prevalence of AA-amyloidosis has been reported in captive cheetahs and a horizontal transmission has been proposed. In domestic cats, AA-amyloidosis has been mainly described in predisposed breeds but only rarely reported in domestic short-hair cats. Aims of the study were to determine AA-amyloidosis prevalence in dead shelter cats. Liver, kidney, spleen and bile were collected at death in cats from 3 shelters. AA-amyloidosis was scored. Shedding of amyloid fibrils was investigated with western blot in bile and scored. Descriptive statistics were calculated. In the three shelters investigated, prevalence of AA-amyloidosis was 57.1% (16/28 cats), 73.0% (19/26) and 52.0% (13/25), respectively. In 72.9% of cats (35 in total) three organs were affected concurrently. Histopathology and immunofluorescence of post-mortem extracted deposits identified SAA as the major protein source. The duration of stay in the shelters was positively associated with a histological score of AA-amyloidosis (B = 0.026, CI95% = 0.007-0.046; p = 0.010). AA-amyloidosis was very frequent in shelter cats. Presence of SAA fragments in bile secretions raises the possibility of fecal-oral transmission of the disease. In conclusion, AA-amyloidosis was very frequent in shelter cats and those staying longer had more deposits. The cat may represent a natural model of AA-amyloidosis.


Asunto(s)
Acinonyx , Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Humanos , Gatos , Animales , Amiloidosis/epidemiología , Amiloidosis/veterinaria , Amiloide , Proteína Amiloide A Sérica/metabolismo
10.
Allergy ; 78(7): 1980-1996, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36883475

RESUMEN

BACKGROUND: Allergy to peanut is one of the leading causes of anaphylactic reactions among food allergic patients. Immunization against peanut allergy with a safe and protective vaccine holds a promise to induce durable protection against anaphylaxis caused by exposure to peanut. A novel vaccine candidate (VLP Peanut), based on virus-like particles (VLPs), is described here for the treatment of peanut allergy. METHODS AND RESULTS: VLP Peanut consists of two proteins: a capsid subunit derived from Cucumber mosaic virus engineered with a universal T-cell epitope (CuMVTT ) and a CuMVTT subunit fused with peanut allergen Ara h 2 (CuMVTT -Ara h 2), forming mosaic VLPs. Immunizations with VLP Peanut in both naïve and peanut-sensitized mice resulted in a significant anti-Ara h 2 IgG response. Local and systemic protection induced by VLP Peanut were established in mouse models for peanut allergy following prophylactic, therapeutic, and passive immunizations. Inhibition of FcγRIIb function resulted in a loss of protection, confirming the crucial role of the receptor in conferring cross protection against peanut allergens other than Ara h 2. CONCLUSION: VLP Peanut can be delivered to peanut-sensitized mice without triggering allergic reactions, while remaining highly immunogenic and offering protection against all peanut allergens. In addition, vaccination ablates allergic symptoms upon allergen challenge. Moreover, the prophylactic immunization setting conferred the protection against subsequent peanut-induced anaphylaxis, showing the potential for preventive vaccination. This highlights the effectiveness of VLP Peanut as a prospective break-through immunotherapy vaccine candidate toward peanut allergy. VLP Peanut has now entered clinical development with the study PROTECT.


Asunto(s)
Anafilaxia , Hipersensibilidad al Cacahuete , Ratones , Animales , Hipersensibilidad al Cacahuete/prevención & control , Estudios Prospectivos , Antígenos de Plantas , Alérgenos , Arachis
11.
Front Immunol ; 14: 1114396, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845100

RESUMEN

Introduction: SARS-CoV-2 has developed a number of Variants of Concern (VOC) with increased infectivity and/or reduced recognition by neutralizing antibodies specific for the receptor binding domain (RBD) of the spike protein. Extended studies of other viruses have shown that strong and broad viral escape from neutralizing serum antibodies is typically associated with the formation of serotypes. Methods: To address the question of serotype formation for SARS-CoV-2 in detail, we generated recombinant RBDs of VOCs and displayed them on virus-like particles (VLPs) for vaccination and specific antibody responses. Results: As expected, mice immunized with wild type (wt) RBD generated antibodies that recognized wt RBD well but displayed reduced binding to VOC RBDs, in particular those with the E484K mutation. Unexpectedly, however, antibodies induced by the VOC vaccines typically recognized best the wt RBDs, often more than the homologous VOC RBDs used for immunization. Hence, these data do not reveal different serotypes but represent a newly observed viral evolution, suggesting a unique situation where inherent differences of RBDs are responsible for induction of neutralizing antibodies. Discussion: Therefore, besides antibody (fine) specificity, other qualities of antibodies (e.g. their affinity) determine neutralizing capability. Immune escape of SARS-CoV-2 VOCs only affects a fraction of an individual's serum antibodies. Consequently, many neutralizing serum antibodies are cross-reactive and thus protective against multiple current and future VOCs. Besides considering variant sequences for next generation vaccines, broader protection will be achieved with vaccines that induce elevated titers of high-quality antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunación , Inmunización , Anticuerpos Neutralizantes
12.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835301

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia and may contribute to 60-70% of cases. Worldwide, around 50 million people suffer from dementia and the prediction is that the number will more than triple by 2050, as the population ages. Extracellular protein aggregation and plaque deposition as well as accumulation of intracellular neurofibrillary tangles, all leading to neurodegeneration, are the hallmarks of brains with Alzheimer's disease. Therapeutic strategies including active and passive immunizations have been widely explored in the last two decades. Several compounds have shown promising results in many AD animal models. To date, only symptomatic treatments are available and because of the alarming epidemiological data, novel therapeutic strategies to prevent, mitigate, or delay the onset of AD are required. In this mini-review, we focus on our understanding of AD pathobiology and discuss current active and passive immunomodulating therapies targeting amyloid-ß protein.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Inmunoterapia , Animales , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Inmunoterapia/métodos , Ovillos Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Humanos , Modelos Animales de Enfermedad
13.
Front Immunol ; 14: 1339171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274816

RESUMEN

The rising global incidence of IgE-mediated allergic reactions poses a significant challenge to the quality of life of affected individuals and to healthcare systems, with current treatments being limited in effectiveness, safety, and disease-modifying capabilities. IgE acts by sensitizing the high-affinity IgE receptor FcεRI expressed by mast cells and basophils, tuning these cells for inflammatory degranulation in response to future allergen encounters. In recent years, IgG has emerged as an essential negative regulator of IgE-dependent allergic inflammation. Mechanistically, studies have proposed different pathways by which IgG can interfere with the activation of IgE-mediated inflammation. Here, we briefly summarize the major proposed mechanisms of action by which IgG controls the IgE-FcεRI inflammatory axis and how those mechanisms are currently applied as therapeutic interventions for IgE-mediated inflammation.


Asunto(s)
Inmunoglobulina E , Calidad de Vida , Humanos , Inmunoglobulina E/metabolismo , Basófilos/metabolismo , Inmunoglobulina G/metabolismo , Inflamación/metabolismo
14.
Front Immunol ; 13: 1069100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36544773

RESUMEN

Background: Recent studies have shown that IgE glycosylation significantly impacts the ability of IgE to bind to its high-affinity receptor FcεRI and exert effector functions. We have recently demonstrated that immunizing mice with IgE in a complex with an allergen leads to a protective, glycan-dependent anti-IgE response. However, to what extent the glycans on IgE determine the induction of those antibodies and how they facilitate serum clearance is unclear.Therefore, we investigated the role of glycan-specific anti-IgE IgG autoantibodies in regulating serum IgE levels and preventing systemic anaphylaxis by passive immunization. Methods: Mice were immunized using glycosylated or deglycosylated IgE-allergen-immune complexes (ICs) to induce anti-IgE IgG antibodies. The anti-IgE IgG antibodies were purified and used for passive immunization. Results: Glycosylated IgE-ICs induced a significantly higher anti-IgE IgG response and more IgG-secreting plasma cells than deglycosylated IgE-ICs. Passive immunization of IgE-sensitized mice with purified anti-IgE IgG increased the clearance of IgE and prevented systemic anaphylaxis upon allergen challenge. Anti-IgE IgG purified from the serum of mice immunized with deglycosylated IgE-ICs, led to a significantly reduced elimination and protection, confirming that the IgE glycans themselves are the primary drivers of the protectivity induced by the IgE-immune complexes. Conclusion: IgE glycosylation is essential for a robust anti-IgE IgG response and might be an important regulator of serum IgE levels.


Asunto(s)
Anafilaxia , Receptores Fc , Ratones , Animales , Anafilaxia/prevención & control , Inmunoglobulina E , Complejo Antígeno-Anticuerpo , Inmunoglobulina G , Alérgenos , Inmunosupresores , Autoanticuerpos
15.
Nat Commun ; 13(1): 7041, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396658

RESUMEN

AA amyloidosis is a systemic disease characterized by deposition of misfolded serum amyloid A protein (SAA) into cross-ß amyloid in multiple organs in humans and animals. AA amyloidosis occurs at high SAA serum levels during chronic inflammation. Prion-like transmission was reported as possible cause of extreme AA amyloidosis prevalence in captive animals, e.g. 70% in cheetah and 57-73% in domestic short hair (DSH) cats kept in zoos and shelters, respectively. Herein, we present the 3.3 Å cryo-EM structure of AA amyloid extracted post-mortem from the kidney of a DSH cat with renal failure, deceased in a shelter with extreme disease prevalence. The structure reveals a cross-ß architecture assembled from two 76-residue long proto-filaments. Despite >70% sequence homology to mouse and human SAA, the cat SAA variant adopts a distinct amyloid fold. Inclusion of an eight-residue insert unique to feline SAA contributes to increased amyloid stability. The presented feline AA amyloid structure is fully compatible with the 99% identical amino acid sequence of amyloid fragments of captive cheetah.


Asunto(s)
Acinonyx , Amiloidosis , Animales , Gatos , Ratones , Acinonyx/metabolismo , Amiloide/metabolismo , Amiloidosis/metabolismo , Microscopía por Crioelectrón , Prevalencia , Proteína Amiloide A Sérica/metabolismo
16.
Front Immunol ; 13: 892631, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275723

RESUMEN

Successful treatment of IgE mediated allergies by allergen-specific immunotherapy (AIT) usually correlates with the induction of allergen-specific IgG4. However, it is not clear whether IgG4 prevents the allergic reaction more efficiently than other IgG subclasses. Here we aimed to compare allergen-specific monoclonal IgG1 and IgG4 antibodies in their capacity to inhibit type I allergic reactions by engaging FcγRIIb. We found that IgG1, which is the dominant subclass induced by viruses, binds with a similar affinity to the FcγRIIb as IgG4 and is comparable at blocking human basophil activation from allergic patients; both by neutralizing the allergen as well as engaging the inhibitory receptor FcγRIIb. Hence, the IgG subclass plays a limited role for the protective efficacy of AIT even if IgG4 is considered the best correlate of protection, most likely simply because it is the dominant subclass induced by classical AITs.


Asunto(s)
Hipersensibilidad Inmediata , Hipersensibilidad , Humanos , Inmunoglobulina E , Basófilos , Inmunoglobulina G , Alérgenos , Desensibilización Inmunológica , Hipersensibilidad/terapia
17.
Front Immunol ; 13: 864718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784292

RESUMEN

mRNA based vaccines against COVID-19 have proven most successful at keeping SARS-CoV-2 pandemic at bay in many countries. Recently, there is an increased interest in heterologous prime-boost vaccination strategies for COVID-19 to maintain antibody responses for the control of continuously emerging SARS-CoV-2 variants of concern (VoCs) and to overcome other obstacles such as supply shortage, costs and reduced safety issues or inadequatly induced immune-responses. In this study, we investigated the antibody responses induced by heterologous prime-boost with vaccines based on mRNA and virus-like particles (VLPs). The VLP-based mCuMVTT-RBM vaccine candidate and the approved mRNA-1273 vaccine were used for this purpose. We find that homologous prime boost regimens with either mRNA or VLP induced high levels of high avidity antibodies. Optimal antibody responses were, however, induced by heterologous regimens both for priming with mRNA and boosting with VLP and vice versa, priming with VLP and boosting with mRNA. Thus, heterologous prime boost strategies may be able to optimize efficacy and economics of novel vaccine strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , ARN Mensajero/genética , SARS-CoV-2/genética
18.
Vaccines (Basel) ; 10(5)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35632499

RESUMEN

In this report, we mechanistically reveal how the Variant of Concern (VOC) SARS-CoV-2 Omicron (B.1.1.529) escapes neutralizing antibody responses, by physio-chemical characterization of this variant in comparison to the wild-type Wuhan and the Delta variant (B.1.617.2). Convalescent sera, as well as sera obtained from participants who received two or three doses of mRNA vaccines (Moderna-mRNA-1273® or Pfizer-BNT162b2®), were used for comparison in this study. Our data demonstrate that both Delta, as well as Omicron variants, exhibit a higher affinity for the receptor ACE2, facilitating infection and causing antibody escape by receptor affinity (affinity escape), due to the reduced ability of antibodies to compete with RBD-receptor interaction and virus neutralization. In contrast, only Omicron but not the Delta variant escaped antibody recognition, most likely because only Omicron exhibits the mutation at E484A, a position associated with reduced recognition, resulting in further reduced neutralization (specificity escape). Nevertheless, the immunizations with RNA-based vaccines resulted in marked viral neutralization in vitro for all strains, compatible with the fact that Omicron is still largely susceptible to vaccination-induced antibodies, despite affinity- and specificity escape.

19.
Allergy ; 77(8): 2446-2458, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35403221

RESUMEN

BACKGROUND: The highly contagious SARS-CoV-2 is mainly transmitted by respiratory droplets and aerosols. Consequently, people are required to wear masks and maintain a social distance to avoid spreading of the virus. Despite the success of the commercially available vaccines, the virus is still uncontained globally. Given the tropism of SARS-CoV-2, a mucosal immune reaction would help to reduce viral shedding and transmission locally. Only seven out of hundreds of ongoing clinical trials are testing the intranasal delivery of a vaccine against COVID-19. METHODS: In the current study, we evaluated the immunogenicity of a traditional vaccine platform based on virus-like particles (VLPs) displaying RBD of SARS-CoV-2 for intranasal administration in a murine model. The candidate vaccine platform, CuMVTT -RBD, has been optimized to incorporate a universal T helper cell epitope derived from tetanus-toxin and is self-adjuvanted with TLR7/8 ligands. RESULTS: CuMVTT -RBD vaccine elicited a strong systemic RBD- and spike-IgG and IgA antibodies of high avidity. Local immune response was assessed, and our results demonstrate a strong mucosal antibody and plasma cell production in lung tissue. Furthermore, the induced systemic antibodies could efficiently recognize and neutralize different variants of concern (VOCs). CONCLUSION: Our data demonstrate that intranasal administration of CuMVTT -RBD induces a protective systemic and local specific antibody response against SARS-CoV-2 and its VOCs.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas de Partículas Similares a Virus , Administración Intranasal , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Partículas Similares a Virus/inmunología
20.
Vaccines (Basel) ; 10(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35214764

RESUMEN

The impact of the COVID-19 pandemic has been reduced since the application of vaccination programs, mostly shown in the reduction of hospitalized patients. However, the emerging variants, in particular Omicron, have caused a steep increase in the number of infections; this increase is, nevertheless, not matched by an increase in hospitalization. Therefore, a vaccine that induces cross-reactive antibodies against most or all variants is a potential solution for the issue of emerging new variants. Here, we present a vaccine candidate which displays receptor-binding domain (RBD) of SARS-CoV-2 on virus-like particles (VLP) that, in mice, not only induce strong antibody responses against RBD but also bind RBDs from other variants of concern (VOCs). The antibodies induced by wild-type (wt) RBD displayed on immunologically optimized Cucumber mosaic virus incorporated tetanus toxin (CuMVTT) VLPs bind to wt as well as RBDs of VOCs with high avidities, indicating induction of strongly cross-reactive IgG antibodies. Interestingly, similar cross-reactive IgA antibodies were induced in immunized mice. Furthermore, these cross-reactive antibodies demonstrated efficacy in neutralizing wt (Wuhan) as well as SARS-CoV-2 VOCs (Beta, Delta, and Gamma). In summary, RBDs displayed on VLPs are capable of inducing protective cross-reactive IgG and IgA antibodies in mice, indicating that it may be possible to cover emerging VOCs with a single vaccine based on wt RBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...